Smooth pointwise multipliers of modulation spaces
نویسندگان
چکیده
منابع مشابه
Smooth pointwise multipliers of modulation spaces
Let 1 < p, q < ∞ and s, r ∈ R. It is proved that any function in the amalgam space W (H p′(R ), l∞), where p ′ is the conjugate exponent to p and H p′(R ) is the Bessel potential space, defines a bounded pointwise multiplication operator in the modulation space M p,q(R ), whenever r > |s|+ d.
متن کاملNon-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces
We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...
متن کاملPOINTWISE MULTIPLIERS FOR REVERSE HÖLDER SPACES II By
We classify weights which map strong reverse Hölder weight classes to weak reverse Hölder weight spaces under pointwise multiplication.
متن کاملPointwise Multipliers of Besov Spaces of Smoothness Zero and Spaces of Continuous Functions
متن کامل
A Class of Fourier Multipliers for Modulation Spaces
We prove the boundedness of a general class of Fourier multipliers, in particular of the Hilbert transform, on modulation spaces. In general, however, the Fourier multipliers in this class fail to be bounded on L spaces. The main tools are Gabor frames and methods from time-frequency analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica
سال: 2012
ISSN: 1844-0835
DOI: 10.2478/v10309-012-0021-8